B.Tech CSE III Year I Semester Examinations

COMPILER DESIGN (A50514)

Time : 3.00 Hours

MODEL PAPER -1

Max.Marks: 70

[14M]

Answer any 5 questions (5x14 = 70 Marks)

Section -1

1. Discuss the phases of a compiler indicating the inputs and outputs of each phase in translating

the statement "amount = principle + rate * 36.0"

OR

2. Define an LL(1) grammar. Is the following grammar LL(1). G:S \rightarrow iEtS | iEtSes |a, E \rightarrow b. Also write the rules for computing FIRST() and FOLLOW(). [14M]

Section -2

3. What is an LALR(1) grammar?. Construct LALR parsing table for the following grammar:

$S \rightarrow CC, C \rightarrow cC, C \rightarrow c d$. [14 N	М	1	
---	---	---	--

OR

4. Explain the usage of YACC parser generator in construction of a Parser. [14M]

Section -3

5. What are different intermediate code forms? Discuss different Three Address code types and implementations of Three Address statements. [14 M]

OR

6. With a neat diagram explain the format of the Symbol Table. And discuss the tree structures representation of scope information. [14 M]

Section -4

7. Explain the following code optimization techniques with examples . [5M-			[5M+4M+5M]
a) Constant propagation b) St	rength reduction	c) Code Motion	
8. a) What is an induction variable	? Explain with an examp	le.	[7 M]
b) Discuss how induction variab	les can be detected and	eliminated from the gi	ven [7 M]
intermediate code			
B2: i:= i+1			
t1:=4*j			
t2:=a[t1]			
if t2<10 goto B2			
	Section -5		
9. Explain various issues in the des	ign of the code generation	on.	[14M]

OR

10. a). Explain the code generation algorithm in detail.	[7M]
b). Write short notes on peephole optimization.	[7M]

B.Tech CSE III Year I Semester Examinations

COMPILER DESIGN (A50514)

Time: 3.00 Hours

MODEL PAPER -2

Max.Marks: 70

Answer any Five questions (5x14 = 70 Marks)

Section -1

1. List out the functions of a Lexical Analyzer? State the reasons for the Separation of Analyses programs into Lexical, Syntax, and Semantic Analyses. [14 M]

OR

2. Define a Parser. What is the role of grammars in Parser construction? Construct the Predictive parsing table for the grammar $G : E \to E+T | T, E \to T^*F | F, F \to (E) | id.$ [14M]

Section -2

- 3. What is an LR(0) item? Construct an SLR parsing table for the grammar
 - G: $S \rightarrow L=R | R, L \rightarrow *R | id, R \rightarrow L$. Is it SLR(1) grammar? [14 M]

OR

Section -3

- 5. What do you mean by attributed grammars? Discuss the a translation scheme for Converting an infix expression to its equivalent postfix form. [14 M]
 - OR
- 6.a) Define activation records.
 - b)Explain how it is related with runtime storage allocation. [7 M+7M]

Section -4

7. What is the role of code Optimizer in compiler? Is it a mandatory phase?	[14 M]
8. What is DAG and flow graph? Explain their role in compilation process.	[14 M]
Section -5	
9 a) Explain why next-use information is required for generating object code?	[7M+7M]
b) Explain the main issues in code generation.	
OR	
10. a) Define code generation .	[4 M+10M]
b) Generate code for the following C program using any code generation algorith main()	ım.
{	
Int I;	
Int a[10];	
while(i<=10)	
a[i]=0;	
}	

B.Tech CSE III Year I Semester Examinations

COMPILER DESIGN (A50514)

Time : 3.00 Hours

MODEL PAPER -3

Max.Marks: 70

Answer any Five questions (5x14 = 70 Marks)

Section -1

1.a)What is LEX?

b)Discuss the usage of LEX in Lexical Analyzer generation.

OR

2.a) Write a note on the parse generator '_ YACC.

b) Write the YACC specification of a simple desk calculator as given: $E \rightarrow E + T/T$ $T \rightarrow T^*F/F$ $F \rightarrow (E) \mid \text{digit where digit between 0 to 9.}$

Section -2

3. a) Obtain the directed acycJic graph for the expression : $x+x^*(y+z)+(y+z)^*w$ [7M+7M]

b) Explain the following with example: i) Quadqaples ii) Triples iii) Indirect triple

OR

4. Compare and contrast SLR with LALR. Define Kernel items and Non-kernel items. [14 M]

Show the following grammar is LALR(1)

 $S \rightarrow Aa \mid bAc \mid dc \mid bda$

A-> d

[4M+10M]

[7M+7M]

Section -3

5. Generate the three address code for the following code fragment.			[14 M]			
a = b + 1	x = y + 3	y = a / b	a =	b + c		
			OR			
6. Write a no	ote on simple ty	ype checker and	d list the differ	ent types of ty	pe checking	[14 M]
			Section -4			
7. What is th	e role of code	Optimizer in co	ompiler? Is it a	mandatory ph	ase?	[14 M]
			OR			
8. a) Constru	uct a DAG for	the expression:	a+a*(b-c)+(b-	c)*d		[7M+7M]
b) Explain	various machi	ne independen	t code optimiza	ation technique	es.	
			Section -5			
9. a) Discuss	s Global Regist	ter Allocation i	n code generat	ion.		[7 M+7M]
b) Genera	te code for the	following C st	atements: i) x=	f(a)+f(a) ii) y	=x/5;.	
			OR			
10. Consider	r the following	basic block of	3-address instr	ructions:		[14M]
a:=b+c	x:=a+b	b:=a-d	c:=b+c	d=a-d	y=a-d	
Write the ne	xt-use informa	tion for each li	ne of the basic	block.		

B.Tech CSE III Year I Semester Examinations

COMPILER DESIGN (A50514)

Time : 3.00 Hours	MODEL PAPER -4	Max.Marks: 70
	Answer any Five questions (5x14 = 70 Marks)	
	Section -1	
1. What is LEX? Disc	cuss the usage of LEX in Lexical Analyzer generation.	[14 M]
	OR	
2. State the various	phases of a compiler and explain them in detail.	[14 M]
	Section -2	
3. Prepare a canonica	al parsing table for the given grammar:	[14 M]
S-> CC		
C-> cC / d	OR	
4. Compare and contr	rast SLR with LALR. Define Kernel items and Non-kernel items	. [14 M]
Show the following	g grammar is LALR(1)	
S-> Aa bAc	dc bda	
A-> d		
	Section -3	
5. Generate the three	address code for the following code fragment.	[14 M]
while(a>b)		

{

if(c<d)

x=y +z; else x=y -z; }

OR

6. Explain the use of symbol table in compilation process. List out the various attributes for implementing the symbol table. [14M]

Section -

Section -5	
8. Explain the role of DAG in optimization with example.	[14 M]
OR	
7. Explain the different storage allocation strategies.	[14 M]

9. Generate code for the following: a) x=f(a)+f(a)+f(a) ii) x=f(f(a))

b) i) x=++f(a) ii) x=f(a)/g(b,c) [7M+7M]

OR

10. Explain the following terms: i) Register Descriptor ii) Address Descriptor iii) Instruction Costs [14 M]

Code No: 115AP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech III Year I Semester Examinations, February/March - 2016 COMPILER DESIGN**

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part-A

		(25 Marks)
1.a)	Define Boot strapping.	[2]
b)	What is Context free grammar?	[3]
c)	Ware the actions performed by Shift reduce parser?	[2]
d)	Describe in brief about types of LR parsers?	[3]
e)	What is type expression?	[2]
f)	Define Type Equivalence?	[3]
g)	Define Basic Block?	[2]
h)	How can you identify the leader in a Basic block?	[3]
i)	Which graph is used for identifying the common sub expression	in an expression?
		[2]
j)	What is meant register allocation and assignment?	[3]

Part-B

2.a) Define Regular Expression? Explain about the Properties of Regular Expressions. Differentiate between Top down and bottom up parsing techniques. b) [5+5]OR Define Compiler? Explain in brief about the syntax and semantic analysis of 3.a) a compiler with an example? Construct a Predictive parsing table for the Grammar b) [5+5] $E \rightarrow E + T/T$, $T \rightarrow T^*F/F$, $F \rightarrow (E)/id$. 4.a) Construct SLR parsing table for the following grammar. $E \rightarrow E+T/T \quad T \rightarrow T^*F/F$ $F \rightarrow (E)/id$. b) Discuss in brief about Yacc. [5+5] OR 5.a) Construct CLR Parsing table for the grammar $S \rightarrow L=R/R$, $L \rightarrow *R/id$, $R \rightarrow L$ b) Define Ambiguous Grammar? Check whether the grammar $S \rightarrow aAB$ [5+5] $A \rightarrow bC/cd$, $C \rightarrow cd$, $B \rightarrow c/d$ Is Ambiguous or not. Explain in detail about Polymorphism. 6.a) Explain in brief about Heap Storage allocation strategy. b) [5+5] OR

Construct an annota www.set Mana Results.co.in 7.a)

Explain in brief about equivalence of type expressions. b) [5+5]

(50 Marks)

- 8.a) Explain in brief about different Principal sources of optimization techniques with suitable examples.
- b) Define Flow Graph? Explain how a given program can be converted in to flow graph.

[5+5]

OR

- 9.a) What is DAG? Construct DAG for the following Basic block. D: = B*C; E:= A+B; B:=B+C; A:=E-D;
 b) Explain how copy propagation can be done using data flow equation. [5+5]
 - b) Explain now copy propagation can be done using data now equation. [3+3]
- 10. Explain in detail the procedure that eliminates global common sub expression.

[10]

OR

- 11.a) What are the object code forms? Explain the issues in code generation.
 - b) Explain about machine dependent code optimization. [5+5]

--00000--

Code No: 115AP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year I Semester Examinations, March - 2017

COMPILER DESIGN

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 75

R13

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

1.a)	Write regular expression over alphabet {a, b, c} containing at least one	'a' and at
	least one 'b'	[2]
b)	What is input buffering? How is input buffering implemented?	[3]
c)	What is operator precedence grammar? Give an example.	[2]
d)	What is significance of lookahead operator in LR parsing?	[3]
e)	What is the s – attributes and l – attributes?	[2]
f)	What is activation record?	[3]
g)	What is dead code elimination and reduction in strength?	[2]
h)	Define loop unrolling. Give an example.	[3]
i)	What is meant by register descriptor and address descriptor?	[2]
j)	How to allocate registers to instruction?	[3]

PART – B

(50 Marks)

[5+5]

- 2.a) Explain the concept of bootstrapping with example.
 b) Consider the following Conditional statement: if (x > 3) then y = 5 else y = 10; How does lexical analyzer help the above statement in process of compilation? [4+6] OR
 3. Construct predictive parsing table for the following grammar [10] S → (L) | a L → L, S | S
- 4. Find the LR (0) set of items for the following grammar. Describe state diagram and construct parse table of that [10] $S \rightarrow CC$ $C \rightarrow cC |d$

OR

- 5.a) Write a procedure to construct LALR parsing table.
- b) Write short notes on YACC.

6.	What is symbol table? Discuss various ways to organizing symbol tab	ble. [10]
7.	Translate the following expression:	
	(a + b) * (c + d) + (a + b + c) into a) Ouadruples b) Triples c) Indirect triples	[3+3+4]
8.a)	What is liveness? Explain liveness with suitable example.	[5+5]
0)	OR	[3+3]
9.	Illustrate loop optimization with suitable example.	[10]
10.	Explain various method to handle peephole optimization. OR	[10]
11.	Generate the code for the following expression: $x = (a + b) - ((Compute its cost.))$	(c + d) - e). Also [10]

Code No: 115AP JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, May/June - 2019 COMPILER DESIGN

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 75

R13

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

1.a)	Why lexical and syntax analyzers are separated?	[2]
b)	List the various error recovery strategies for a lexical analysis.	[3]
c)	Mention the types of LR parser.	[2]
d)	Define LR(0) items with examples.	[3]
e)	What are the benefits of intermediate code generation?	[2]
f)	Explain about hashing.	[3]
g)	What is a basic block?	[2]
h)	Discuss about common sub expression elimination.	[3]
i)	How do you calculate the cost of an instruction?	[2]
j)	List out the common issues in the design of code generator.	[3]

PART - B

(50 Marks)

2. Explain the various phases of a compiler in detail. Also write down the output for the following expression after each phase a: $=b^*cd$. [10]

OR

- 3. What is FIRST and FOLLOW? Explain the steps to compute FIRST and FOLLOW with an example. [10]
- 4. Check whether the following grammar is SLR (1) or not. Explain your answer with Reasons. [10]

 $S \rightarrow L=R$ $S \rightarrow R$ $L \rightarrow *R$ $L \rightarrow id$ $R \rightarrow L.$ OR

- 5. Consider the grammar. $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E) / id$ Construct CLR parsing table for the above grammar. Give the moves of the CLR parser on id * id + id. [10]
- 6. What is a three address code? Mention its types. How would you implement the three address statements? Explain with examples. [10]

OR

7. Describe in detail the syntax directed translation of case statements. [10]

8.	What are steps needed to compute the next use information?	[10]
	OR	
9.	Discuss about the following:	
	a) Copy Propagation	
	b) Dead code Elimination and	
	c) Code motion.	[10]
10.	Write the code generation for the $d:=(a-b)+(a-c)+(a-c)$.	[10]
	OR	

11. Write a code generation algorithm. Explain about the descriptor and function getreg(). Give an example. [10]

---00000----

Code No: 115AP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November - 2015 COMPILER DESIGN (Computer Science and Engineering)

Time: 3 hours

Max. Marks: 75

R13

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A (25 Marks)

1.a) b)	Define Cross Compiler. Eliminate immediate left recursion for the following grammar: E->E+T T	[2]
	$T \rightarrow T^* F F$	
	$F \rightarrow (E) \mid id$	[3]
c)	List the rules for computing FOLLOW SET.	[2]
d)	Define CLOSURE (I).	[3]
e)	What is a symbol table?	[2]
f)	What does a semantic analysis do?	[3]
g)	Define basic block in a flow graph.	[2]
h)	What is a DAG? Mention its applications	[3]
i)	Generate a object code for following statements	
	a = b + c; d = a + e	[2]
j)	Mention the properties that a code generator should possess.	[3]
	PART - B (50 Marks)	
2.	What are the various phases of the compiler? Explain each phase in detail. OR	[10]
3.	Construct the predictive parser for the following grammar: S->(L)/a L->L,S/S	[10]
4.	Find the SLR parsing table for the given grammar: E->E+E E^*E (E) id.	
	And parse the sentence $(a+b)*c$.	[10]
	OR	
5.	Construct an LALR Parsing table for the following grammar: E-> E+T T T-> T*F F F->id	[10]

6.	Generate intermediate code for the following code segment along with t syntax directed translation scheme:	he required
	if(a>b)	
	x=a+b	
	else	
	x=a-b	
	Where a and x are of real and b of int type data.	[10]
	OR	
7.	Give syntax directed translation scheme for simple desk circulator.	[10]
8.	Explain the following with an example:	
	a) Redundant sub expression elimination	
	b) Frequency reduction	50 0 17
	c) Copy propagation.	[3+3+4]
	OR	
9.	Optimize the following code using various optimization techniques: i=1; s=0;	[10]
	for (i=1; i<=3; i++)	
	for $(j=1;j<=3;j++)$	
	c[i][j]=c[i][j] + a[i][j] + b[i][j]	
10.	Explain in detail about machine dependent code optimization techniques.	[10]
11	UK Circum and the share have DAC is used for maintain allocation	[10]
11.	Give an example to snow now DAG is used for register allocation.	[10]

---00000----

$S \rightarrow aAB$. $A \rightarrow bC/cd$, $C \rightarrow cd.$

Define Ambiguous Grammar? Check whether the grammar

 $B \rightarrow c/d$ Is Ambiguous or not?

b)

OR

Construct SLR Parsing table for the grammar 5.a) $_{L\rightarrow L,s|s}^{S\rightarrow\ (L)|a}$ WWW . MANARESULTS . CO . IN

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Code No: 115AP

Time: 3 hours

PART - A

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November/December - 2018 **COMPILER DESIGN** (Computer Science and Engineering)

(25 Marks)

R13

Max. Marks: 75

1.a)	Define Boot strapping?	[2]
b)	What are the draw backs of predictive parsing?	[3]
c)	What are the actions performed by Shift reduce parser?	[2]
d)	Differentiate between SLR, LALR and CLR parsers.	[3]
e)	What are the applications of DAG?	[2]
f)	What are the advantages of stack storage allocation strategy?	[3]
g)	Define Basic block. What are the rules for defining a basic block?	[2]
h)	What is common sub expression elimination?	[3]
i)	Define Dead code elimination?	[2]
j)	What is register allocation? Give a brief description.	[3]

PART - B

(50 Marks)

- 2.a) Define Regular Expression. Explain about the Properties of Regular Expressions.
 - Differentiate between Top down and bottom up parsing techniques. b) [5+5]

OR

- Define Compiler? Explain in brief about the types of lexical errors with example. 3.a)
- b) Construct a Predictive parsing table for the Grammar [4+6] $E \rightarrow E + T/T, T \rightarrow T^*F/F, F \rightarrow (E)/id?$
- 4.a) Construct LALR Parsing table for the grammar $S \rightarrow L = R/R$ $L \rightarrow R/id$ $R \rightarrow L$

Discuss in brief about model of LR parser. b)

[6+4]

[6+4]

6.a)	Construct a Quadruple, Triple and Indirect Triple for the statement $a+a^{*}(b-c)+(b-c)^{*}d$?	
b)	Differentiate between Static and Dynamic Storage allocation Strategies. OR	[5+5]
7.a)	Construct an annotated parse tree for real id1, id2, id3.	
b)	Explain in brief about equivalence of type expressions.	[5+5]
8.a)	Explain in brief about different Principal sources of optimization techniques suitable examples.	s with
b)	Define Flow Graph? Explain how a given program can be converted into flow	graph? [5+5]
	OR	
9.a) b)	Explain in brief about function preserving transformations on basic blocks. Explain in brief about optimization of basic blocks.	[5+5]
10.a) b)	Explain in detail about global common sub expression elimination technique. Explain in brief about Induction variable elimination.	[5+5]
11 \		
11.a) b)	Explain in detail about the issues in the design of code generator. Explain in detail about peep hole optimization.	[5+5]

---00000----

WWW.MANARESULTS.CO.IN

Code No: 115AP JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November/December - 2016 COMPILER DESIGN (Computer Science and Engineering)

Time: 3 hours

1.a)

b)

c)

d)

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

Write a brief note on bootstrap process. What are the differences between a compiler and an interpreter? Give the specification of the YACC parser generator. Construct the LR(0) items for the "dangling-else" grammar.

- e) How to check structural equivalence of two type expressions? [2]
- f) Define and write the differences between synthesized attributes and inherited attributes.

		[5]
g)	Write a short note on Flow graph.	[2]
h)	Write an algorithm for constructing a basic block.	[3]
i)	Define various possible outputs of the code generator.	[2]
j)	Construct DAG for the following basic block:	[3]

T1=A+B
T2=C+D
T3 = E - T2
T4=T1-T3

PART - B

(50 Marks)

2.a) Explain various error recovery strategies in lexical analysis.

b)	Construct	а	Finite	Automata	and	Scanning	algorithm	for	recognizing	identifiers,
	numerical	co	nstants	in C langua	ige.	OP				[5+5]

- 3. Explain the various phases of a compiler with an illustrative example. [10]
- 4. Construct the LR Parsing table for the following grammar: [10] $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E)/id$

OR

- 5.a) Write a YACC program that will take regular expression as input and produce its parse tree as output.
 - b) Write an algorithm for computing LR(k) item sets. [5+5]

(25 Marks)

[2]

[3]

[2]

[3]

Max. Marks: 75

R13

6.a) b)	Write an SDT to convert infix to postfix expression. Explain briefly about polymorphic functions.						
7.	UK Explain various storage allocation strategies with its merits and demerits. [1						
8.	Discuss various techniques of function preserving transformations for optimization.	code [10]					
0	OR	54.03					
9.	Explain how data flow equations are set up and solved for improving code.	[10]					
10.	Explain the following peephole optimization techniques: a) Elimination of Redundant Code b) Elimination of Unreachable Code.	[5+5]					
	OR						
11.	Explain in detail about machine dependent code optimization techniques with drawbacks.	1 their [10]					

---00000----